Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available April 28, 2026
-
Computational prediction of good thermoelectric (TE) performance in several n-type doped Zintl phases, combined with successful experimental realization, has sparked interest in discovering new n-type dopable members of this family of materials. However, most known Zintls are typically only p-type dopable; prior successes in finding n-type Zintl phases have been largely serendipitous. Here, we go beyond previously synthesized Zintl phases and perform chemical substitutions in known n-type dopable ABX Zintl phases to discover new ones. We use first-principles calculations to predict their stability, potential for TE performance as well as their n-type dopability. Using this approach, we find 17 new ABX Zintl phases in the KSnSb structure type that are predicted to be stable. Several of these newly predicted phases (KSnBi, RbSnBi, NaGeP) are found to exhibit promising n-type TE performance and are n-type dopable. We propose these compounds for further experimental studies, especially KSnBi and RbSnBi, which are both predicted to be good TE materials with high electron concentrations due to self-doping by native defects, when grown under alkali-rich conditions.more » « less
-
null (Ed.)Accurate density functional theory calculations of the interrelated properties of thermoelectric materials entail high computational cost, especially as crystal structures increase in complexity and size. New methods involving ab initio scattering and transport (AMSET) and compressive sensing lattice dynamics are used to compute the transport properties of quaternary CaAl 2 Si 2 -type rare-earth phosphides RECuZnP 2 (RE = Pr, Nd, Er), which were identified to be promising thermoelectrics from high-throughput screening of 20 000 disordered compounds. Experimental measurements of the transport properties agree well with the computed values. Compounds with stiff bulk moduli (>80 GPa) and high speeds of sound (>3500 m s −1 ) such as RECuZnP 2 are typically dismissed as thermoelectric materials because they are expected to exhibit high lattice thermal conductivity. However, RECuZnP 2 exhibits not only low electrical resistivity, but also low lattice thermal conductivity (∼1 W m −1 K −1 ). Contrary to prior assumptions, polar-optical phonon scattering was revealed by AMSET to be the primary mechanism limiting the electronic mobility of these compounds, raising questions about existing assumptions of scattering mechanisms in this class of thermoelectric materials. The resulting thermoelectric performance ( zT of 0.5 for ErCuZnP 2 at 800 K) is among the best observed in phosphides and can likely be improved with further optimization.more » « less
An official website of the United States government
